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Abstract

The present work is concerned with computation of natural convection flow in a square enclosure with a centered internal conducting
square block both of which are given an inclination angle. Finite volume method through the concepts of staggered grid and SIMPLE
algorithm have been applied. Deferred QUICK scheme has been used to discretize the convective fluxes and central difference for
diffusive fluxes. The problem of conjugate natural convection has been taken up for validating the code. The abrupt variation in the
properties at the solid/fluid interface are taken care of with the harmonic mean formulation. Solution has been performed in the
computational domain as a whole with proper treatment at the solid/fluid interface. Computations have been performed for
Ra = 103–106, angle of inclination varying from 15� to 90� in steps of 15� and ratio of solid to fluid thermal conductivities of 0.2 and
5.0. Results are presented in terms of streamlines, isotherms, local and average Nusselt number.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Over the past years, natural convection process has been
studied by various researchers because of its relevance to
heat transfer in many science and engineering applications.
Natural convection heat transfer is relevant to large scale
natural phenomena in the fields of astrophysics, geophys-
ics, atmospheric sciences, and a wide range of engineering
applications such as cooling of electronic equipment, solid-
ification processes, growing crystals and solar collectors.
These are always complex interactions between the finite
fluid content inside the enclosure with the enclosure walls.
Since the velocity and the temperature equations are cou-
pled due to the buoyancy force, the study of natural con-
vection is very complex.
0017-9310/$ - see front matter � 2006 Elsevier Ltd. All rights reserved.
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A large number of research articles are available which
deal with the study of natural convection in simple geome-
try enclosures with either vertical or horizontal imposed
heat flux or temperature difference. A thorough review
work can be obtained in Ostrach [1]. Conjugate heat trans-
fer with natural convection is an important area because it
changes the boundary conditions as well as the heat trans-
fer processes. Kim and Viskanta [2] studied the effect of
solid wall on the differentially heated cavity. They consid-
ered different cases where heating was done from top, side
and bottom wall of a square cavity. They concluded that
Nusselt number depends not only on the flow but also on
the thermal and geometrical parameters of the walls enclos-
ing the cavity.

de Vahl Davis [3] has presented a numerical solution of
natural convection in a differentially heated square cavity
where the top and the bottom surfaces are maintained adi-
abatic whereas the vertical surfaces are differentially heated.
This problem generally is used as the benchmark situation
for validating a computer code. Modification of this prob-
lem to include the conjugate heat transfer or complicated
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Nomenclature

g acceleration due to gravity
h convection coefficient
k thermal conductivity of the fluid
ks thermal conductivity of the solid
k* thermal conductivity ratio of solid to fluid
L length of enclosure
Nu Nusselt number
p dimensionless pressure
Pr Prandtl number
Ra Rayleigh number
S, Source source term
T dimensionless temperature
u, v dimensionless velocity components in x- and y-

directions
W size of the body
x, y dimensionless Cartesian coordinates

Greek symbols
a thermal diffusivity
ap under-relaxation parameter

b coefficient of thermal expansion
f dimensionless body size
q density
m kinematic viscosity
/ angle of inclination
u general variable

Subscripts

avg average
c cold surface
e, w, n, s control volume faces
h hot surface
L local
max maximum
nb neighbouring grid point
1 ambient conditions

Superscript
* guessed value/dimensional variable
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cavity problem has been solved and presented in literatures.
House et al. [4] have investigated the effect of a centered
conducting body on natural convection in an enclosure.
The effect of Rayleigh number, Prandtl number, body size,
ratio of thermal conductivities are studied. The important
observation made is that the heat transfer across the enclo-
sure, in comparison to that in the absence of a body, may be
enhanced (reduced) by a body with a thermal conductivity
ratio less (greater) than unity. This is an important observa-
tion as far as conjugate heat transfer is concerned. Sathe
and Joshi [5] studied the natural convection arising from a
heat generating substrate-mounted protrusion in an enclo-
sure. The boundaries are maintained at isothermal cold
conditions. They concluded that in actual situation, sub-
strate conduction effects cannot be neglected. Also, it may
be inappropriate to prescribe simple boundary conditions
such as constant temperature or heat flux on the protrusion
faces and solve for the governing equations only in the fluid.

Sun and Amery [6] considered the effect of a heat source
and an internal baffle on natural convection heat transfer in
a rectangular enclosure. All the walls are of finite conduc-
tance. The horizontal walls are considered to be adiabatic
on the boundary whereas the vertical walls are differentially
heated. They also concluded that it is inappropriate to spec-
ify simple boundary conditions on the walls and to neglect
the conduction through the baffles. The complete conjugate
heat conduction, convection and radiation problem for a
heated block in a differentially heated square enclosure is
solved by Liu and Phan-Tien [7]. The boundary conditions
of the enclosure is similar to that of de Vahl Davis [3]. In
comparison to the problem considered by House et al. [4],
the block is generating heat. The conduction and the emis-
sion of the block has a substantial effect on the heat transfer
situation. Ha and Jung [8] conducted a numerical study of
conjugate heat transfer of natural convection in a cubic
enclosure with a centered cubic heat-conducting heat gener-
ating body. Right and left vertical walls are maintained at
differentially heated condition. All other walls are insulated.
The presence of the solid body results in a larger variation
of the local Nusselt number compared to cases without a
cubic conducting body in the enclosure.

Yucel and Ozdem [9] studied natural convection in a
square enclosure with partial dividers. The top and bottom
walls are maintained adiabatic or perfectly conducting
while the left and right walls are maintained at differential
temperature. They observed that there is definite variation
of the mean Nusselt number with the Rayleigh number and
the number and the size of partitions. Ha et al. [10] carried
out two-dimensional unsteady natural convection inside an
enclosure with a square body. The bottom wall is hot and
the top wall is cold. Four different thermal boundary con-
dition of the square body is considered: cold isothermal
body, neutral isothermal body, hot isothermal body and
adiabatic body. They reported an unsteady flow and tem-
perature fields when the Rayleigh number is high. It also
depends upon the thermal boundary condition of the body.

It is observed that the study of natural convection of an
inclined cavity in the presence of an inclined conducting
block has not been carried out so far. The influence of
the angle of inclination is studied here with the view to
know the effect of angle, on the heat transfer characteris-
tics. In the present case, the various parameters considered
are Ra = 103–106, angle of inclination from 15� to 90� and
two k* viz. 0.2 and 5.0.
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2. Description of the problem

The geometry being solved here is that of an inclined
square enclosure with sides of length L (Fig. 1). The cold
wall (Tc = 0.0) is making an angle of / with horizontal
direction. For / = 0�, cold wall becomes the bottom wall
whereas for / = 90�, it becomes the right vertical wall.
Opposite to the cold wall (Tc = 0) is the hot wall
(Th = 1.0). Other two walls are maintained at adiabatic
condition. The solid conducting body centered at L

2
, has

sides of length W with thermal conductivity ks. The flow
within the enclosure is laminar and gravitational accelera-
tion acts parallel to the walls. Boussinesq approximation
is assumed to be valid and the problem is formulated as
a steady state case.
Control volume

Control volume
NCV1

NCV2
3. Governing equations and boundary conditions

Natural convection is governed by the differential
equations expressing the conservation of mass, momen-
tum, and energy. The present flow is considered steady,
laminar, incompressible and two-dimensional. The viscous
dissipation term in the energy equation is neglected. The
momentum equations are simplified using Boussinesq
approximation, in which all fluid properties are assumed
constant except the density in its contribution to the buoy-
ancy force. The governing equations and the boundary
conditions are cast in dimensionless form using the follow-
ing dimensionless variables:
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Fig. 1. Schematic diagram of tilted cavity and the solid body.
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where k* is the ratio of thermal conductivity of the body to
that of the fluid.
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Fig. 2. The computational grid with NCV1 and NCV2 control volumes.

Table 1
Grid independence study

NCV1 NCV2 Nuavg

Case (a): Ra = 105 and k* = 5.0

22 20 4.31698
27 25 4.31046
30 28 4.30800

Case (b): Ra = 105 and k* = 0.2

22 20 4.63162
27 25 4.62404
30 28 4.62117
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The boundary conditions used in the problem are

1. At x = 0, 0 6 y 6 1, T = 1.0.
2. At x = 1, 0 6 y 6 1, T = 0.0.
3. At y = 0 and at y = 1.0, 0 6 x 6 1, oT

oy ¼ 0:0.

4. On all sides of the body, Ts = Tf and oT
on

��
f
¼ k�oT

on

��
s
.

The angle of inclination of the block and enclosure is
varied from 15� to 90� with increments of 15�.

4. Numerical procedure

Numerical solution of the governing equations is done
by finite volume method, using SIMPLE algorithm as given
in Patankar [11] on a staggered grid. Deferred QUICK
scheme of Hayase et al. [12] was used in discretizing the
convective fluxes in the interior points and deferred central
difference was used in discretizing the convective fluxes for
the points adjacent to the boundaries. The generalized
equations resulting from the finite volume discretization
will be of the form
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aPuP ¼ aEuE þ aW uW þ aNuN þ aSuS þ sourceuðx; yÞ

¼
X

anbunb þ sourceuðx; yÞ ð6Þ

where aP = aE + aW + aN + aS + a0.
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simultaneously with suitable modifications. In the fluid
region the momentum equations are solved as usual and
when the solid medium is reached the velocities in the solid
region were made zero using the following procedure.
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the momentum equations being u and v, respectively. In
this way the velocities u and v are set to zero in the solid
domain.

The energy equation in the domain is solved using two
separate energy equations for fluid and solid region main-
Fig. 9. The various streamline ((a)–(f)) and isotherm ((g)–(l)) plots for Ra = 10
increments of 15�.
taining the flux continuity at the solid block and fluid inter-
face. It is maintained by solving the energy equation using
the Tri-Diagonal Matrix Algorithm (TDMA) with sweep
in both directions. In this way the flux continuity condition
in x direction is satisfied during the y sweep and vice versa.
5, f = 0.5 and k* = 0.2 beginning with an angle of inclination of 15� and in
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Also, the matching conditions at the solid/fluid interface
are simultaneously satisfied. The algorithm ensured the
continuity of fluxes at all control surfaces. The abrupt
changes in the properties (k* and Pr) are dealt with using
the harmonic mean formulation as suggested in Patankar
[11] and House et al. [4].
Fig. 10. The various streamline ((a)–(f)) and isotherm ((g)–(l)) plots for Ra = 10
increments of 15�.
The TDMA [11] is applied for the line-by-line solution of
the momentum, energy and pressure correction equations.
The pseudo-transient approach is followed for the numeri-
cal solution as it is useful for situation in which governing
equations give rise to stability problems e.g. buoyant flows
[13]. The iterative procedure is initiated by the solution of
5, f = 0.5 and k* = 5.0 beginning with an angle of inclination of 15� and in
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energy equation followed by momentum equations and is
continued until convergence is achieved. Euclidean norm
of the residual is taken as convergence criteria for each
dependent variable in the entire flow field [14]. Mass conver-
gence criteria was taken as 10�6 and temperature conver-
gence was taken as 10�4. The value of f can be varied for
Fig. 11. The various streamline ((a)–(f)) and isotherm ((g)–(l)) plots for Ra = 10
increments of 15�.
different conductivity ratios (k*) and different Rayleigh
numbers (Ra) and the effect on the heat transfer rate can
be studied by calculating the Nusselt number. The calculated
numerical results were then validated with the results of
House et al. [4]. In the present study numerical results were
calculated for various body sizes and various k* values.
6, f = 0.5 and k* = 0.2 beginning with an angle of inclination of 15� and in
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5. Grid independence study

Control volumes were developed such that there were
more number of control volumes between body and the
enclosing wall. In every direction the number of control
volumes was such that there were NCV1 control volumes
between body and the wall, NCV2 in the body and
Fig. 12. The various streamline ((a)–(f)) and isotherm ((g)–(l)) plots for Ra = 10
increments of 15�.
NCV1 again between wall and the body. A typical compu-
tational grid is shown in Fig. 2. First, grid independent
study was done for various grid sizes of

(1) NCV1 = 22 and NCV2 = 20
(2) NCV1 = 27 and NCV2 = 25
(3) NCV1 = 30 and NCV2 = 28
6, f = 0.5 and k* = 5.0 beginning with an angle of inclination of 15� and in
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for a f value of 0.5 and for Ra = 105 and different k* values
of 0.2 and 5.0.

Table 1 shows the grid independence test results. It is
found that for a grid size of NCV1 = 27 and NCV2 = 25
and beyond that there was not much improvement in the
numerical results. The change in the Nusselt number
occurred only at the second and third decimal points.
Hence this grid size is used throughout the computation.

6. Validation of the code

Extensive validation of the developed code has been car-
ried out by comparing the results with those of House et al.
[4]. The average Nusselt number has been computed for
various f with k* = 0.2 and 5.0. The same has been per-
formed for Ra = 103, 104, 105 and 106 and are shown in
Fig. 3(a–d), respectively. Excellent agreement has been
obtained. The computations have been performed by vary-
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ing k* and Nuavg for Ra = 105 and f = 0.5 and is shown in
Fig. 4. In this case also, good agreement has been obtained.
Details of the grid independence and validation of the code
may be obtained in Reddy [15].

7. Results and discussion

The calculated flow fields are plotted for angle of incli-
nation varying from 15� to 90� in steps of 15� for Ra vary-
ing from 103–106 and for k* values of 0.2 and 5.0 . The Pr
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Case (a): Ra = 103

Figs. 5 and 6 show the isotherms for various angle of
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the Ra is small and conduction is the mode of heat transfer.
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are clustered near the isothermal walls indicating that heat
transfer is more compared to low k* value of 0.2 (Fig. 5).
The isotherm patterns remain unaltered by the angle of
inclination. The Nuavg is higher for k* = 5.0 compared to
k* = 0.2 as shown in Fig. 14(a). The Nuavg also remains
constant with / confirming conduction is the mode of heat
transfer. At Ra = 103, natural convection flow is signifi-
cantly suppressed. The high value of k* allows for higher
diffusion heat transfer. Thus the average Nusselt number
for k* = 0.2 is less than for k* = 5.0 at all angles.

Case (b): Ra = 104

It is observed that the stream lines patterns (not shown)
are almost uniform signifying the relative dominance of
diffusion even at this stage. As the angle (/) increases,
the concentration of isotherms at the corners of the isother-
mal walls of the block i.e. bottom (left) and top (right)
increase showing that significant heat transfer occurs
across these corners due to less thermal resistance (see Figs.
7 and 8). The wavy pattern and the clustering of the iso-
therms indicate that advection process has begun and this
increases with the increase in the angle. Most of the heat
transfer on the hot wall occurs at the bottom. Even at
low angle of inclination, for k* = 5.0, the isotherms are
concentrated near the hot and cold walls compared to
k* = 0.2 indicating that heat transfer is more. From
Fig. 14(b) it is seen that the average Nusselt number for
k* = 0.2 is less than that of k* = 5.0 up to an angle of
86�, where they are equal and beyond that the average Nus-
selt number for k* = 0.2 is slightly greater than k* = 5.0.
This range where they are equal has been termed as ‘‘crit-
ical angle”.

Case (c): Ra = 105

As Ra is increased to 105 (Figs. 9 and 10), streamline
patterns show regions of flow separation. The size of the
vortex formed is large for small angle of inclination and
the size reduces for higher angles. The development and
shifting of the two corner vortices on the body with
increase in angle is well captured for k* = 0.2. However,
for k* = 5.0, the size of the vortex formed decreases with
the increase in angle and finally disappears for / = 90�
(Fig. 10). For a high thermal conductivity body, the recir-
culation region tends to distribute the temperature effec-
tively. With the increase in angle the wall thermal
boundary layer thickness increases at the isothermal wall
side of the enclosure. The heat transfer across the block
appears to be one dimensional from the upper passage to
the lower passage. The NuL is plotted along the isothermal
hot wall for various angle of inclination and shown in
Fig. 13(a) and (b). Increase in the angle of inclination
results in the increase of NuL. Higher k* means better con-
ductive heat transfer within the core. That is why the rela-
tive NuL value is more for higher k* value at lower angle of
inclination. With similar reasoning as given for Case (b),
Nuavg is higher for k* = 5.0 compared to k* = 0.2 for low
angle of inclination as seen in Fig. 15(a). As the angle
increases, the trend reverses. The average Nusselt number
for k* = 0.2 is more than the average Nusselt number for
k* = 5.0 beyond 67.9�. Two vortices noticed at 90� inclina-
tion for k* = 0.2 may have thus increased the convective
heat transfer compared with k* = 5.0. At higher angle of
inclination, for k* = 0.2 (Fig. 9(l)), the isotherms in the
block imply that the direction of heat transfer is in the
direction of the adiabatic walls. That means no heat trans-
fer takes place in the differentially heated walls. This makes
the thermal boundary layer dense near the isothermal walls
and increase the Nuavg value.

Case (d): Ra = 106

As observed from Figs. 11 and 12, for k* = 0.2 and
smaller /, more number of vortices with complex stream
line pattern are evolved. This could be due to the reason
that at low k* and high Ra, the advecting fluid has higher
temperature resulting in large buoyancy forces which leads
to the formation and break up of vortices at the corners. As
the angle of inclination increases, the number of such
regions decrease and a few large vortices can be seen at
the left and right walls of the conducting block. However,
for a large k* value, the streamlines are more organized
with final settlement of two vortices on the walls of the
block. For k* = 0.2, as the angle of inclination increases,
the thickness of the thermal boundary layer on the hot wall
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of the enclosure increases resulting in more heat transfer.
Isotherms in the fluid region are more oriented towards
the flow direction indicating the dominance of advection.
The NuL distribution for k* = 0.2 and 5.0 are shown in
Fig. 13(c) and (d). The patterns are similar to Case (c)
and same reasoning applies here also. From Fig. 15(b)
the average Nusselt number for k* = 0.2 is less than the
average Nusselt number for k* = 5.0 till an angle (/) of
64.6� and beyond that the average Nusselt number for
k* = 0.2 is higher than for k* = 5.0.

Effect of angle of inclination (/)
Fig. 16(a) and (b) shows the variation of Nuavg as a func-

tion of (/) for various Ra with k* = 0.2 and k* = 5.0,
respectively. It is observed that for Ra = 103, Nuavg remains
constant for the range of (/) considered indicating that
conduction is the mode of heat transfer. For / = 0, the
imposed thermal boundary condition is that of a thermally
stratified fluid. Therefore, with an increase in angle /,
Nuavg increases significantly. For low / = 15�, Nuavg for
all Ra number considered are nearly equal in both the
cases. With increase of Ra, convection is the dominant
mode of heat transfer which results in a significant increase
in Nuavg.
8. Conclusions

Natural convection conjugate heat transfer inside an
inclided square cavity with an internal conducting block
has been carried out with f = 0.5 for different Rayleigh
number from 103 to 106 and conductivity ratio values of
k* = 0.2 and k* = 5.0. The following conclusions are
made:

� Up to Ra = 103, conduction is the mode of heat transfer.
Above this Ra, convection mode of heat transfer begins
to dominate.
� Above Ra = 103, there exists a critical point where the

Nuavg value for low and high k* cases interchange rela-
tive magnitude.
� Below critical point, a body with higher k* value assists

in higher heat transfer.
� It can be concluded that a body with low k* can transfer

more heat than a body with high k* beyond the critical
point.
� At low Rayleigh numbers angle of inclination has nom-

inal effect on heat transfer for different k*.
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